Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 942
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38561567

RESUMO

Atypical orienting of visuospatial attention in autistic individuals or individuals with a high level of autistic-like traits (ALTs) has been well documented and viewed as a core feature underlying the development of autism. However, there has been limited testing of three alternative theoretical positions advanced to explain atypical orienting - difficulty in disengagement, cue indifference, and delay in orienting. Moreover, research commonly has not separated facilitation (reaction time difference between neutral and valid cues) and cost effects (reaction time difference between invalid and neutral cues) in orienting tasks. We addressed these limitations in two experiments that compared groups selected for Low- and High-ALT levels on exogenous and endogenous versions of the Posner cueing paradigm. Experiment 1 showed that High-ALT participants exhibited a significantly reduced cost effect compared to Low-ALT participants in the endogenous cueing task, although the overall orienting effect remained small. In Experiment 2, we increased task difficulty of the endogenous task to augment cueing effects. Results were comparable to Experiment 1 regarding the finding of a reduced cost effect for High-ALT participants on the endogenous cueing task and additionally demonstrated a reduced facilitation effect in High-ALT participants on the same task. No ALT group differences were observed on an exogenous cueing task included in Experiment 2. These findings suggest atypical orienting in High-ALT individuals may be attributable to general cue indifference, which implicates differences in top-down attentional processes between Low- and High-ALT individuals. We discuss how indifference to endogenous cues may contribute to social cognitive differences in autism.

2.
iScience ; 27(4): 109550, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38595796

RESUMO

During the evolution of large models, performance evaluation is necessary for assessing their capabilities. However, current model evaluations mainly rely on specific tasks and datasets, lacking a united framework for assessing the multidimensional intelligence of large models. In this perspective, we advocate for a comprehensive framework of cognitive science-inspired artificial general intelligence (AGI) tests, including crystallized, fluid, social, and embodied intelligence. The AGI tests consist of well-designed cognitive tests adopted from human intelligence tests, and then naturally encapsulates into an immersive virtual community. We propose increasing the complexity of AGI testing tasks commensurate with advancements in large models and emphasizing the necessity for the interpretation of test results to avoid false negatives and false positives. We believe that cognitive science-inspired AGI tests will effectively guide the targeted improvement of large models in specific dimensions of intelligence and accelerate the integration of large models into human society.

3.
Psychol Sci ; : 9567976241235932, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568870

RESUMO

Oscillations serve a critical role in organizing biological systems. In the brain, oscillatory coupling is a fundamental mechanism of communication. The possibility that neural oscillations interact directly with slower physiological rhythms (e.g., heart rate, respiration) is largely unexplored and may have important implications for psychological functioning. Oscillations in heart rate, an aspect of heart rate variability (HRV), show remarkably robust associations with psychological health. Mather and Thayer proposed coupling between high-frequency HRV (HF-HRV) and neural oscillations as a mechanism that partially accounts for such relationships. We tested this hypothesis by measuring phase-amplitude coupling between HF-HRV and neural oscillations in 37 healthy adults at rest. Robust coupling was detected in all frequency bands. Granger causality analyses indicated stronger heart-to-brain than brain-to-heart effects in all frequency bands except gamma. These findings suggest that cardiac rhythms play a causal role in modulating neural oscillations, which may have important implications for mental health.

4.
STAR Protoc ; 5(2): 103023, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640064

RESUMO

Social cooperation is fundamentally important for group animals but rarely studied in mice because of their natural aggressiveness. Here, we present a new water-reward assay to investigate mutualistic cooperative behavior in mice. We describe the construction of the apparatus and provide details of the procedures and analysis for investigators to characterize and quantify the mutualistic cooperative behavior. This protocol has been validated in mice and can be used for investigating mechanisms of cooperation. For complete details on the use and execution of this protocol, please refer to Zhang et al. and Wang et al.1,2.

6.
J Autism Dev Disord ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607475

RESUMO

Previous research links resting frontal gamma power to key developmental outcomes in young neurotypical (NT) children and infants at risk for language impairment. However, it remains unclear whether gamma power is specifically associated with language or with more general cognitive abilities among young children diagnosed with autism spectrum disorder (ASD). The current study evaluates differences in resting frontal gamma power between young autistic and NT children and tests whether gamma power is uniquely associated with individual differences in expressive language, receptive language and non-verbal cognitive abilities in autistic and NT children. Participants included 48 autistic children and 58 age- and sex-matched NT children (ages 22-60 months). Baseline electroencephalography (EEG) recordings were acquired from each participant. Children also completed the Mullen Scales of Early Learning (MSEL). We found that frontal gamma power at rest did not differ between autistic and NT children. Among autistic children, reduced frontal gamma power was significantly associated with both higher expressive language skills and higher non-verbal cognitive skills, controlling for age and sex. The interaction between frontal gamma power and diagnostic status no longer explained unique variance in expressive language skills after controlling for variance associated with non-verbal cognitive skills across autistic and NT children. Together, these findings suggest that reduced gamma power is associated with both better expressive language and non-verbal cognitive skills among young autistic children. Moreover, associations between high frequency neural activity and cognition are not specific to verbal abilities but reflect neural mechanisms associated with general higher-order cognitive abilities in ASD.

7.
iScience ; 27(5): 109611, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638561

RESUMO

Memory has been identified as the least heritable cognitive trait in canines, suggesting a significant influence of non-genetic factors. We observed a trend that overall memory scores (OMS) improve with age in a cohort of 27 young dogs, but considerable plasticity exists. Employing linear discriminant analysis of gut microbiome data from dogs exhibiting low and high OMS, a single bacterial species, Bifidobacterium pseudolongum, was identified and confirmed to be correlated with elevated OMS. Subsequent analysis using a random forest regression model revealed that sex, litter, and breed identity had minimal predictive importance. Age had some predictive value but failed to achieve statistical significance in this dataset. In sharp contrast, the abundance of 17 bacterial taxa in the microbiome showed a stronger predictive capacity for memory performance. Our findings provide insights into microbiome underpinnings of mammalian cognitive functions and suggest avenues for developing psychobiotics to enhance canine memory and learning.

8.
iScience ; 27(5): 109617, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38660401

RESUMO

Long-term manned spaceflight and extraterrestrial planet settlement become the focus of space powers. However, the potential influence of closed and socially isolating spaceflight on the brain function remains unclear. A 180-day controlled ecological life support system integrated experiment was conducted, establishing a spaceflight analog environment to explore the effect of long-term socially isolating living. Three crewmembers were enrolled and underwent resting-state fMRI scanning before and after the experiment. We performed both seed-based and network-based analyses to investigate the functional connectivity (FC) changes of the default mode network (DMN), considering its key role in multiple higher-order cognitive functions. Compared with normal controls, the leader of crewmembers exhibited significantly reduced within-DMN and between-DMN FC after the experiment, while two others exhibited opposite trends. Moreover, individual differences of FC changes were further supported by evidence from behavioral analyses. The findings may shed new light on the development of psychological protection for space exploration.

9.
iScience ; 27(4): 109565, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38617556

RESUMO

In the present study, we used an impulse perturbation method to probe working memory maintenance of colors in neurally active and activity-quiescent states, focusing on a set of pre-registered analyses. We analyzed the electroencephalograph (EEG) data of 30 participants who completed a delayed match-to-sample working memory task, in which one of the two items that were presented was retro-cued as task relevant. The analyses revealed that both cued and uncued colors were decodable from impulse-evoked activity, the latter in contrast to previous reports of working memory for orientation gratings. Decoding of colors from oscillations in the alpha band showed that cued items could be decoded therein whereas uncued items could not. Overall, the outcomes suggest that subtle differences exist between the representation of colors, and that of stimuli with spatial properties, but the present results also demonstrate that regardless of their specific neural state, both are accessible through visual impulse perturbation.

10.
iScience ; 27(4): 109521, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38591012

RESUMO

To facilitate goal-directed actions, effective management of working memory (WM) is crucial, involving a hypothesized WM "gating mechanism." We investigate the underlying neural basis through behavioral modeling and connectivity assessments between neuroanatomical regions linked to theta, alpha, and beta frequency bands. We found opposing, threshold-dependent mechanisms governing WM gate opening and closing. Directed beta band connectivity in the parieto-frontal and parahippocampal-occipital networks was crucial for threshold-dependent WM gating dynamics. Fronto-parahippocampal connectivity in the theta band was also notable for both gating processes, although weaker than that in the beta band. Distinct roles for theta, beta, and alpha bands emerge in maintaining information in WM and shielding against interference, whereby alpha band activity likely acts as a "gatekeeper" supporting processes reflected by beta and theta band activity. The study shows that the decision criterion for WM gate opening/closing relies on concerted interplay within neuroanatomical networks defined by beta and theta band activities.

11.
Mem Cognit ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519780

RESUMO

The prevailing model of landmark integration in location memory is Maximum Likelihood Estimation, which assumes that each landmark implies a target location distribution that is narrower for more reliable landmarks. This model assumes weighted linear combination of landmarks and predicts that, given optimal integration, the reliability with multiple landmarks is the sum of the reliabilities with the individual landmarks. Super-optimality is reliability with multiple landmarks exceeding optimal reliability given the reliability with each landmark alone; this is shown when performance exceeds predicted optimal performance, found by aggregating reliability values with single landmarks. Past studies claiming super-optimality have provided arguably impure measures of performance with single landmarks given that multiple landmarks were presented at study in conditions with a single landmark at test, disrupting encoding specificity and thereby leading to underestimation in predicted optimal performance. This study, unlike those prior studies, only presented a single landmark at study and the same landmark at test in single landmark trials, showing super-optimality conclusively. Given that super-optimal information integration occurs, emergent information, that is, information only available with multiple landmarks, must be used. With the target and landmarks all in a line, as throughout this study, relative distance is the only emergent information available. Use of relative distance was confirmed here by finding that, when both landmarks are left of the target at study, the target is remembered further right of its true location the further left the left landmark is moved from study to test.

13.
iScience ; 27(4): 109338, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38495818

RESUMO

Many studies have suggested that the neocortex operates as a global network of functionally interconnected neurons, indicating that any sensory input could shift activity distributions across the whole brain. A tool assessing the activity distribution across cortical regions with high temporal resolution could then potentially detect subtle changes that may pass unnoticed in regionalized analyses. We used eight-channel, distributed electrocorticogram (ECoG) recordings to analyze changes in global activity distribution caused by single pulse electrical stimulations of the paw. We analyzed the temporally evolving patterns of the activity distributions using principal component analysis (PCA). We found that the localized tactile stimulation caused clearly measurable changes in global ECoG activity distribution. These changes in signal activity distribution patterns were detectable across a small number of ECoG channels, even when excluding the somatosensory cortex, suggesting that the method has high sensitivity, potentially making it applicable to human electroencephalography (EEG) for detection of pathological changes.

14.
iScience ; 27(3): 109274, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38496293

RESUMO

Streamlined action sequences must remain flexible should stable contingencies in the environment change. By combining analyses of behavioral structure with a circuit-specific manipulation in mice, we report on a relationship between action timing variability and successful adaptation that relates to post-synaptic targets of primary motor cortical (M1) projections to dorsolateral striatum (DLS). In a two-lever instrumental task, mice formed successful action sequences by, first, establishing action scaffolds and, second, smoothly extending action duration to adapt to increased task requirements. Interruption of DLS neurons in M1 projection territories altered this process, evoking higher-rate actions that were more stereotyped in their timing, reducing opportunities for success. Based on evidence from neuronal tracing experiments, we propose that DLS neurons in M1 projection territories supply action timing variability to facilitate adaptation, a function that may involve additional downstream subcortical processing relating to collateralization of descending motor pathways to multiple basal ganglia centers.

15.
iScience ; 27(4): 109373, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500831

RESUMO

Many studies have demonstrated that attention affects the perception of many visual features. However, previous studies show conflicting results regarding the effect of attention on the perception of self-motion direction (i.e., heading) from optic flow. To address this question, we conducted three behavioral experiments and found that estimation accuracies of large headings (>14°) decreased with attention load, discrimination thresholds of these headings increased with attention load, and heading estimates were systematically compressed toward the focus of attention. Therefore, the current study demonstrated that attention affected heading perception from optic flow, showing that the perception is both information-driven and cognitive.

17.
Trends Cogn Sci ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508911

RESUMO

Large language models (LLMs) have come closest among all models to date to mastering human language, yet opinions about their linguistic and cognitive capabilities remain split. Here, we evaluate LLMs using a distinction between formal linguistic competence (knowledge of linguistic rules and patterns) and functional linguistic competence (understanding and using language in the world). We ground this distinction in human neuroscience, which has shown that formal and functional competence rely on different neural mechanisms. Although LLMs are surprisingly good at formal competence, their performance on functional competence tasks remains spotty and often requires specialized fine-tuning and/or coupling with external modules. We posit that models that use language in human-like ways would need to master both of these competence types, which, in turn, could require the emergence of separate mechanisms specialized for formal versus functional linguistic competence.

18.
iScience ; 27(4): 109475, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38550990

RESUMO

Body postures provide information about others' actions, intentions, and emotions. Little is known about how postures are represented in the visual system. Considering our extensive visual and motor experience with body postures, we hypothesized that priors derived from this experience may systematically bias visual body posture representations. We examined two priors: gravity and biomechanical constraints. Gravity pushes body parts downward, while biomechanical constraints limit the range of possible postures (e.g., an arm raised far behind the head cannot go down further). Across three experiments (N = 246), we probed participants' visual memory of briefly presented postures using change discrimination and adjustment tasks. Results showed that lifted arms were misremembered as lower and as more similar to the nearest biomechanically plausible postures. Inverting the body stimuli eliminated both biases, ruling out visual confounds. These findings show that visual memory representations of body postures are modulated by a combination of category-general and category-specific priors.

19.
STAR Protoc ; 5(2): 102978, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38547125

RESUMO

Investigating the spatially distributed information contained in fMRI data is essential for understanding brain functions. Here, we present a protocol to dynamically predict short-term changes in neural patterns using trial-by-trial blood-oxygen-level-dependent (BOLD) activity of a seed region. We describe steps for setting fMRI data acquisition parameters and quantification of changes in multivariate patterns. We then detail procedures for defining seed regions and identifying brain areas in which changes in multivariate patterns can be predicted by BOLD activity of the seed region. For complete details on the use and execution of this protocol, please refer to Möhring et al.1.

20.
STAR Protoc ; 5(2): 102967, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492225

RESUMO

Uncontrollability could lead to behavioral adjustment or even giving up when facing repeated failure. Here, we detail a protocol to study the behavioral transition from action to no-action induced by prolonged uncontrollable experiences in mice. We describe the behavioral devices, video analysis, and the exponential learning curve fitting for mathematical assessment. We perform further validation experiments evaluating locomotor, social, and anxiety-/depression-like behaviors. This approach helps study neural mechanisms underlying adaptive decision-making when facing repeated failure. For complete details on the use and execution of this protocol, please refer to Li et al.1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...